Ломаная линия — что это такое и как её провести

Ломаная линия — что это такое простыми словами

Ломаная линия — определение

Одним из наиболее простых и понятных геометрических терминов считают прямую линию. Есть в математике похожая фигура, но с некоторыми характерными чертами. Давайте попробуем разобраться, что такое ломаная линия и каковы её особенности.

Ломаная линия — математическая фигура, включающая в себя несколько отрезков, которые меняют направление.

Если выражаться более чётко, то это черта, которая не является прямой по всей длине, но может не иметь изгибов на отдельном отрезке.

ломаная линия – это несколько отрезков

Таким образом, фигура в обязательном порядке отвечает нескольким признакам:

  • состоит из отрезков, которые являются её звеньями;
  • конец каждого звена является началом следующего (кроме последнего);
  • находящиеся рядом отрезки не могут располагаться на прямой, то есть угол между ними не равен 180 градусам.

Обозначение ломаной линии

Чтобы отметить ломаную линию на чертеже вам необходимо указать наименования точек стыка, в которых она меняет направление, латинскими буквами.

ломаная линия

Из чего состоит ломаная линия

Как вы уже успели заметить, на рисунках присутствуют звенья — отрезки, составляющие ломаную линию. А вот начальные и конечные точки этих составных частей — вершины. На картинке вершины ломаной ABCD — позиции A, B, C, D.

звенья и вершины ломаной линии

Признак замкнутости ломаной линии

Классификация ломаных линий прежде всего осуществляется по свойству замыкания.

Замкнутая ломаная линия — фигура, у которой конечная позиция совпадает с начальной. Иначе говоря, когда она заканчивается в том же месте, где начиналась.

ломаная линия – замкнутая

Яркие представители — треугольник и квадрат, а также остальные виды многоугольников:

варианты изображения замкнутых ломаных линий

Незамкнутая ломаная линия — фигура, которая приходит в позицию, отличающуюся от начальной.

ломаная линия – незамкнутая

Время от времени, у учащихся возникает вопрос: «Как определить, замкнутая фигура или нет?». Ответ будет весьма прост:»Когда число отрезков равно количеству вершин — она замкнутая, а при наблюдающемся неравенстве — незамкнутая».

В качестве дополнительного вида рассматривают понятие самопересекающаяся ломаная линия — та, которая скрещивается на пути своего следования. Для данного термина не имеет значения сколько раз произошло пересечение.

самопересекающаяся фигура

На рисунке отмечены точки пересечения — S, P, а также вершины — A,B,C,D,E,F.

Иногда люди спрашивают — «Могут ли вершины являться точками пересечения?». Чтобы найти ответ, обратите внимание на рисунок с пересекающейся и одновременно замыкающейся — ломаной линией:

вершина ломаной линии, совпадающая с точкой пересечения

Изображение отличается от предыдущего: отрезок EB перемещён, поэтому вершина A приобрела статус точки пересечения.

Как измерить длину ломаной линии

Ломаная линия, имеющая начало и конец, имеет распространённую стандартную характеристику — длину. Имея цель сделать замер её длины, необходимо суммировать длины всех её составных частей — отрезков.

рассчёт длины ломаной линии

Чем ломаная линия отличается от прямой

сравнение ломаной линии и прямойлинии

При взгляде на рисунок очевидно: уникальный признак ломаной линии — отсутствие углов, равных 180 градусам. В остальном, фигуры одинаковые и обладают схожими свойствами, например, длиной.

Примеры ломаных линий в быту

В целях наилучшего усвоения теории, разумно на практике ознакомиться с примерами ломаных линий из жизни.

Ломаная линия— график фондового рынка. Так как отрезки графика очень маленькие, поэтому может показаться, что это кривая, но при ближайшем рассмотрении оказывается, что это не так.

график в форме ломаной линии

Фасад дома при переводе на «язык геометрии» выглядит как замкнутая ломаная линия.

дом в виде ломаной

Пирамиды древнего Египта обладали формой треугольника — одной из самых популярных ломаных линий.

пирамиды – ломаные линии

Добавить комментарий

Ваш адрес email не будет опубликован.

Пролистать наверх